If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-38u-80=0
a = 1; b = -38; c = -80;
Δ = b2-4ac
Δ = -382-4·1·(-80)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-42}{2*1}=\frac{-4}{2} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+42}{2*1}=\frac{80}{2} =40 $
| x×4=28 | | -1(v+4)+5=4v+1-5v | | |x|/6=-4 | | 4+2n=-6n-4(2n-5) | | 2x-9=5x-4 | | 6a+8+3a=4a+23 | | 2x+2(-5+15)=-10 | | x/2+1=x+2 | | .3/6=x/128 | | 7z+9.75-7z=-5.15 | | 11x+1=-1x | | 20-3x=6-2x | | 25/1000=3/x | | 9c/5=-12 | | x^2(2x-7)-11x(2x-7)+24(2x-7)=0 | | 2(y-2)=y | | 0.3^n=0.001 | | 250/1000=x/5 | | x^2−10x+27=0 | | (-5v-4)=+(v-1) | | -9+p=17 | | 2x+|x|=-2 | | (1/8)t+7=13 | | 15n=14n-10 | | (t/4)+32=28 | | 251.2=2(3.14)r(10) | | 3+4x=28x+27 | | 70=x+50 | | 2^x=4x | | 5(m-5)=80 | | 6x-5(2x+5)=23 | | (t/3)+14=25 |